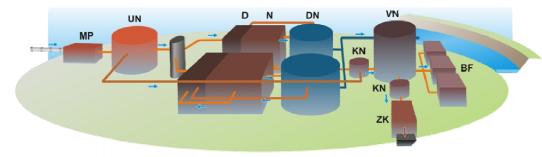
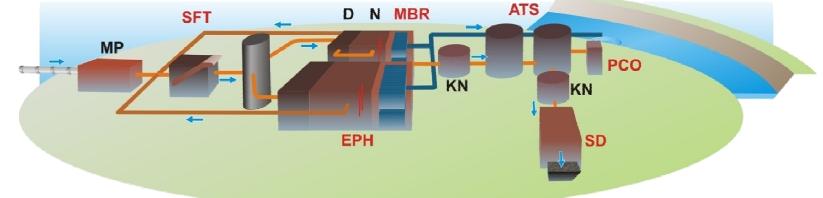
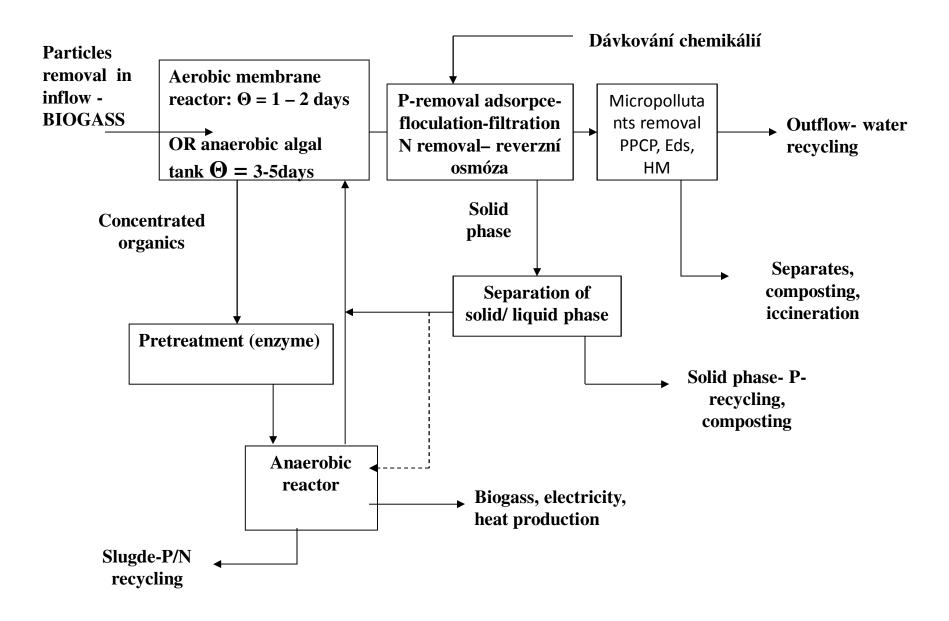

There is an energy in water... ...and even more

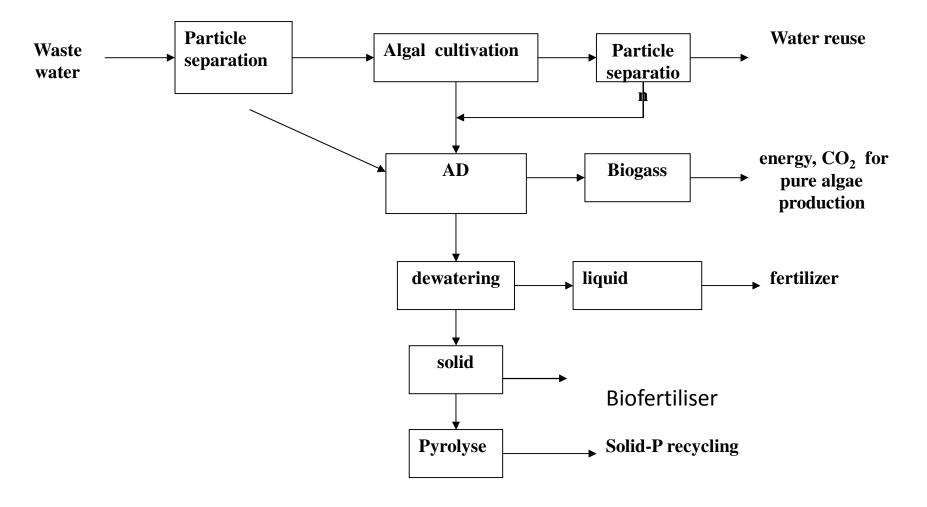

Prof. Ing. Blahoslav Marsalek, Ph.D., Masaryk University Brno,


Waste water? Used water? RESOURCE!

- Waste water is concentrated resource of N, P, S) and energy

Our direction ...




- to decrease costs for energy \rightarrow energy self-sufficient WWTP
- advanced technologies \rightarrow algal production \rightarrow higher efficiency for same investment costs

Furure scheme of WWTP?

WWTP with maximal recyclation

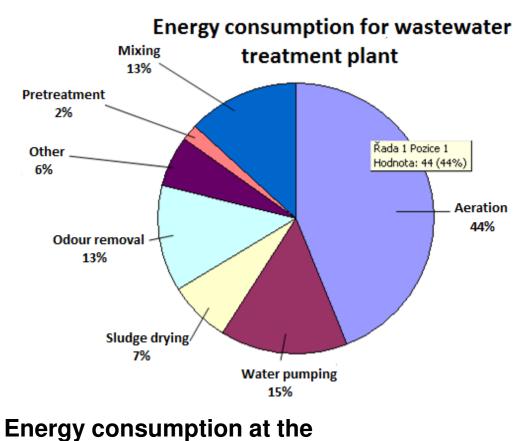
Energy in wastewater

Heat energy

 Heat energy of wastewater is derived from heat capacity of water – ca. 4.2 kJ/kg•K or 4.2 MJ/m³ per 1 ℃ of temperature change.

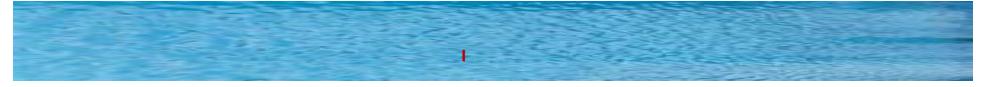
Hydraulic (kinetic and potential) energy

 Potential energy of water level is equal to 9.8 kJ/m³ per 1 meter of height. Kinetic energy is equal to 0.18 kJ/m³ at stream velocity 0.6 m/s.


Chemical energy

 Chemical energy is contained in organic matter present in wastewater, usually defined as COD in mg/L. Tchobanoglous [3] defines chemical energy of sludge as 13 MJ/kg COD, that can be recalculated as 5.6 MJ/m³ for municipal sewage. Real data at WWTP North Toronto showed value 6.3 MJ/m³.

Effective and economical system


- optimization of device and equipment at WWTP
- 2. energy recycling
- 3. energy from biomass
- 4. renewable energy

WWTP for 100 000 PE

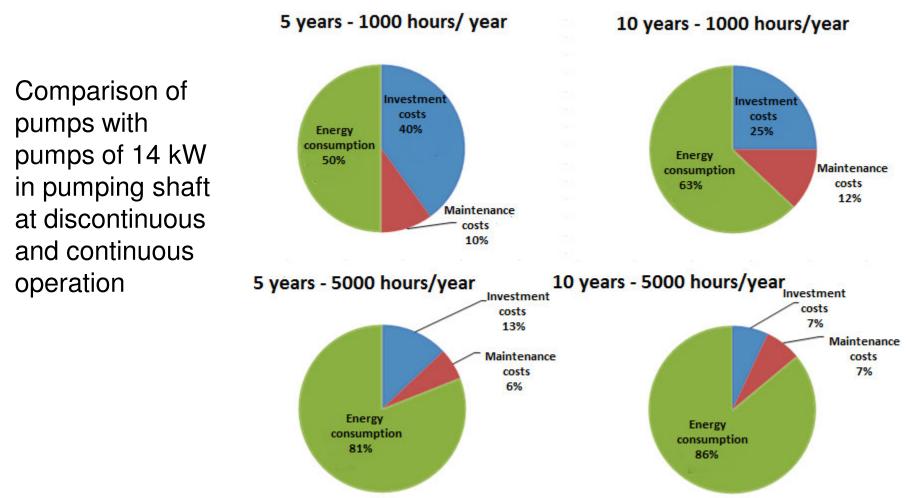
Where to focus on?

- Level of the saved money depends more than on the site of WWTP than its technology
- Up to 20 000 PE we focus on energy audit of devices and its optimization or sludge dewatering. We can save ca. 20 % of overall costs
- WWTP with more than 20 000 PE have a big potential in anaerobic sludge digestion with co-digestion and biogas utilization. We can save ca 30 % of overall costs

Energy audit

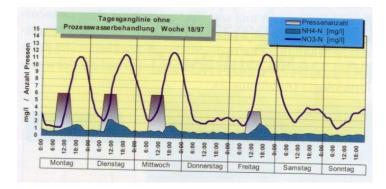
device exchange for those with lower energy consumption

- blowers
- pumps
- mixers

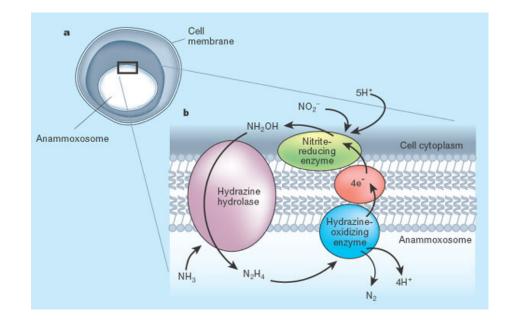

process control optimization

- control
- air supply
- biological processes
- sludge management

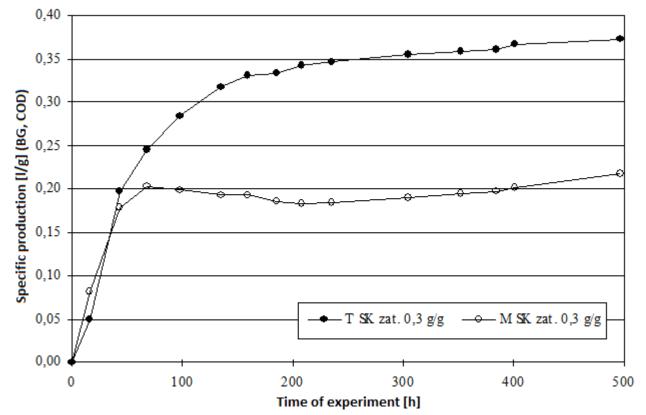
heat energy production



Comparison of pumps


Biological process control optimization

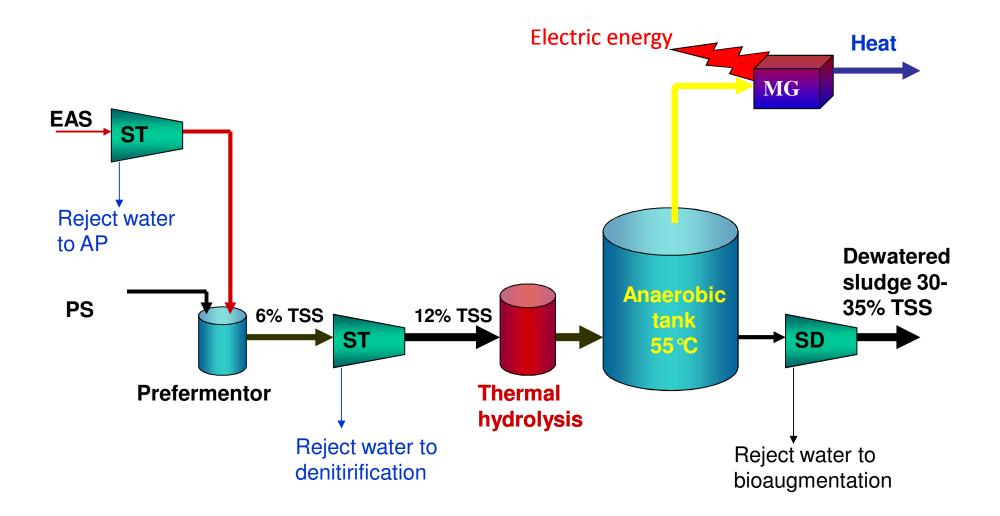
- controlled by O₂ concentration
- novel technologies


- SHARON
- DEMON
- ANAMMOX

 $NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$

Thermophilic/mesophilic digesters

Specific production of biogas during anaerobic digestion of raw sludge by thermophilic and mesophilic anaerobic biomass



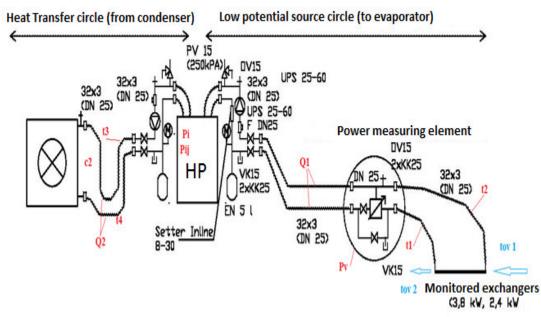
Increased production of biogas

	% energie in biogas	% overall efficiency	% electric efficiency	kWh _{el} /kg TSS
Mesophilic thickening - 7 %	54,98	30,7	15,5	0,66
Thermophilic thickening-7%	66,41	41,2	22,4	0,97
Thermophil. + 50% heat recuperation	66.41	49,4	22,4	0,97
Thickening to 8%, thermoph.	66,41	43,3	22,4	0,97
Desintegration, thermophilic	71,5	45,7	24,1	1,05
Entire hydrolysis, thermoph.	82	56,5	28,2	1,23
Sludge combustion	0	45,8	11,5	0,50

Algal biomass and sludge processing AD flowscheme

Energetic sludge potential

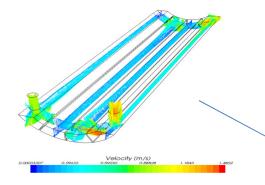
	kCal/kg TSS	EP in 1 kg TSS (MJ)
sludge	3200	13
Algae20%+sludge	3620	15
wood	3780	16
waste	2200	9
coal	8000	33


Heat energy production conditions

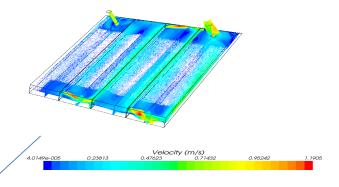
- minimum dry inlet 15 L/s (applicable ca. from 5 000 10 000 PE)
- heat potential in the inlet wastewater (average temperature in winter would be higher than 10 $^{\circ}$ C)
- heat energy consumers close to the heat energy production place
- competitive energy sources, e.g. heating
- it cannot influence proper function of sewerage and WWTP

Heat energy production

Pilot-plant solution at WWTP Letonice


- Inlet and outlet wastewater have big heat potential
- Low-potential heat through heat pump
- Utilization for building heating, sludge heating before fermentation tanks, sludge drying
- Outlet temperatue up to 80 °C

Heat energy production


Mathematical modeling x reality

Performance:

Measured : 2 420 W

Modeled : 2 477 W 2.4 % error

Performance Measured: 4 977 W Modeled: 4 436 W 10 % error

ALGAL ONLINE MONITOR

PARAMETERS

- Quantification of algal growth rate, (chl-a, μg/L)
- algal health and physiological status

PRINCIPLE

- fluorescence chl-a
- Induction of Kautsky effect
- chl-a
- Continual measurement
- High sensitivity
- Data transfer by GSM
- ROBUST FOR HRAP

Detekction of algal growth rate in waste water treatment

- Biomonitoring- fluoresence parameters
- On-line growth rate and algal physiology monitoring
- Expensive, but make you sure, if there is no problem

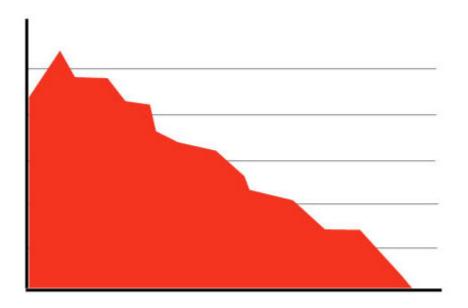
 remote sensing – on line data

🍯 FluorPen

File Device Setup Help

e Device Setup C:\Documen	-	s√Zlatica No	votná\Doki	umenty\AOM\	2009_AOM'	Mostis	6 800 6 600 6 400 6 200 6 000 5 800			m
Index	1 2		3		5 600 5 400 5 200 5 000	المعتمدين مسرم				
Time	10:34:50	19.9 2009	10:35:53	3 19.9 2009	11:35:11 19.9		4 800 4 600 4 400		* ¥	
🚽 ID	OJIP-455nm		OJIP-590nm		OJIP-455ni		4 200 4 000 3 800 3 600			
Value Description	Fo Fi Fi Fm Fv Vi Fm/Fo Fv/Fo Fv/Fm Mo Area Fix Area Sm Ss N Phi_Po Phi_Po Phi_Do Phi_Do Phi_Do Phi_Pav	209 4427 8893 11156 13330 8903 0.502 0.756 3.011 2.011 0.668 1.375 4048044 12929432 454.683 0.365 1246.153 0.668 0.498 0.333 0.332 944.214	Bckg Fo Fi Fi Fm Fv Vi Vi Fm/Fo Fv/Fo Fv/Fn Mo Area Fix Area Sm Ss N Phi_Po Psi_o Phi_Eo Phi_Eo Phi_Do Phi_Pav	204 1008 1739 2196 3086 2078 0.352 0.572 3.062 2.062 0.673 0.375 1013986 2835346 487.962 0.937 520.671 0.673 0.648 0.436 0.327 908.620	Bckg Fo Fi Fm Fw Vi Vi Fm/Fo Fv/Fo Fv/Fm Mo Area Fix Area Sm Ss N Phi_Po Psi_o Phi_Eo Phi_Eo Phi_Do Phi_Pav	1.650 0.62 [®] 1.45 4640 1143 632.; 0.35 1767 0.62; 0.48 0.29; 0.37; 956.)	Setup Help UPcounserts and Setings(Claim 10 000 10 000 9 500 9 000 8 500 7 500 7 500 7 500 6 500 6 500 4 500 3 500 2 500 1000 1000 1000 1000			09) Graph 8 254 5 5 2003 / Graph 8 419 5 5 20

C:\Documents and Settings\Zlatica Novotná\Dokumenty\ADM\2009_ADM\Jundrov_duben\ADM\DataLog05_11_2009_03094M.dat


Cyanobacterial biomass separator Up to 40t/ha, 3-4xtimes a year!!! AND CLEANED DRINKING WATER

EXPECTED PHOSPHORUS SHORTAGE

-non-renewable source

-peak in 2030

-rock phosphate reserves for 50 – 100 years

-concentration of mines in Western Sahara, China and USA

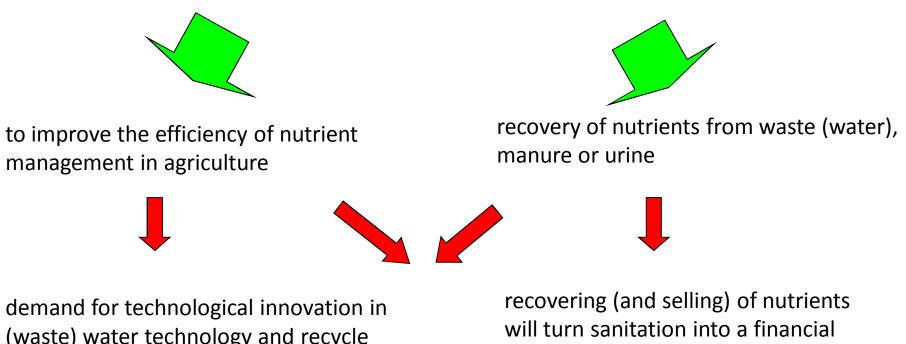
WHY DO WE NEED PHOSPHORUS?

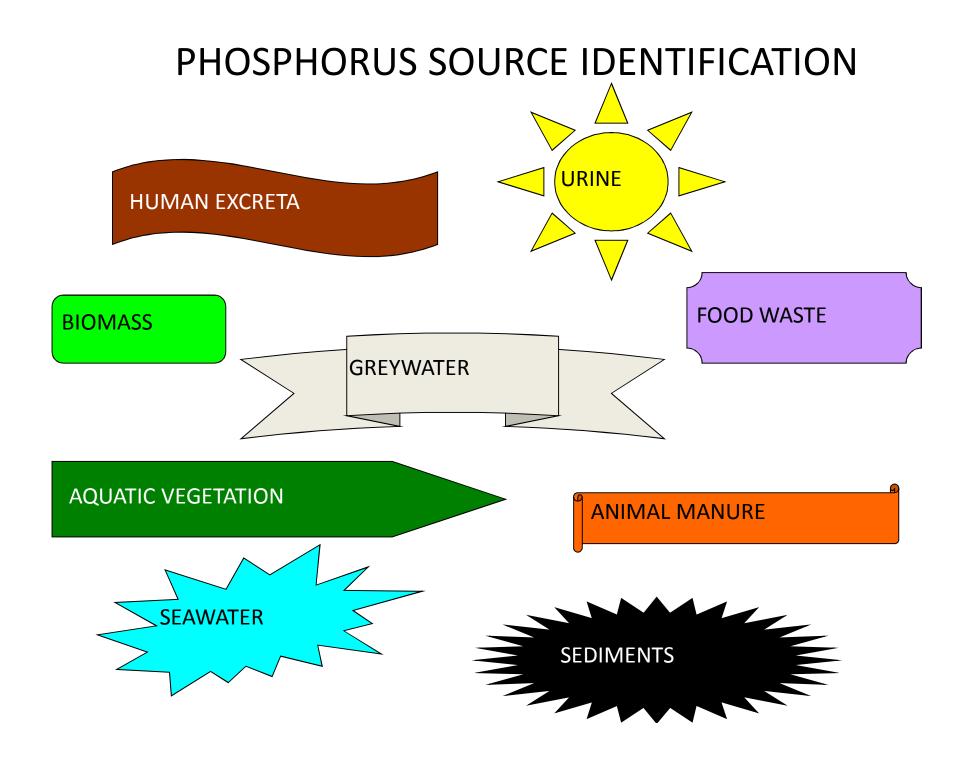
-79 % OF PHOSPHORUS GOES TO MAKE FERTILIZERS

-11 % FOR FEED GRADE ADDITIVES

-7 % FOR DETERGENTS

PLANTS NEED PHOSPHORUS TO GROW


Long term consequences could result in large-scale famine and social-political turmoil


PHOSPHORUS SHORTAGE SOLUTIONS

THERE IS NO SUBSTITUTE FOR PHOSPHORUS

sustainable business

(waste) water technology and recycle industries

PHOSPHORUS IN ENVIRONMENT

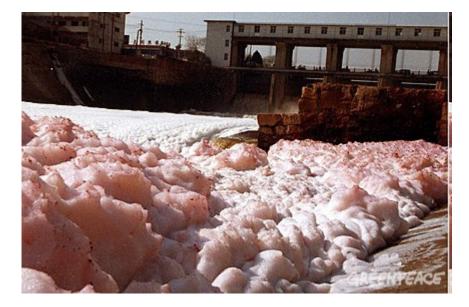
Phosphorus content in (un)treated wastewater brings problems with increased trophication in water bodies

Phosphorus conversion into solid fraction

Salt precipitate

Plant biomass

Microbial biomass



CHANGE OF THE PARADIGMS

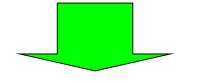
PHOSPHORUS DOES NOT BELONG TO WATER BUT INTO SOIL

HOW TO AVOID IT?

SOLUTION OF THE CAUSE

e.g. prevention of the diffusive and point source intake

SOLUTION OF THE CONSEQUENCES


water bloom removal

HOW TO SOLVE IT?

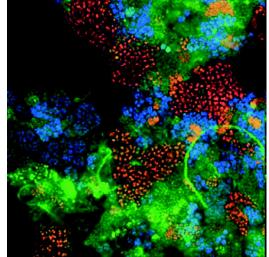
WE HAVE LACK OF PHOSPHORUS

Х

EXCESSIVE PHOSPHORUS CONCENTRATION HAS DETRIMENTAL EFFECT IN WATER ENVIRONMENT

LET'S REMOVE PHOSPHORUS AT ITS SOURCE AND RECYCLE IT

HOW TO REMOVE AND RECYCLE PHOSPHORUS?


PHYSICAL PROCESSES

-PARTICULATE PHOSPHORUS FILTRATION (e.g. tertiary filtration)

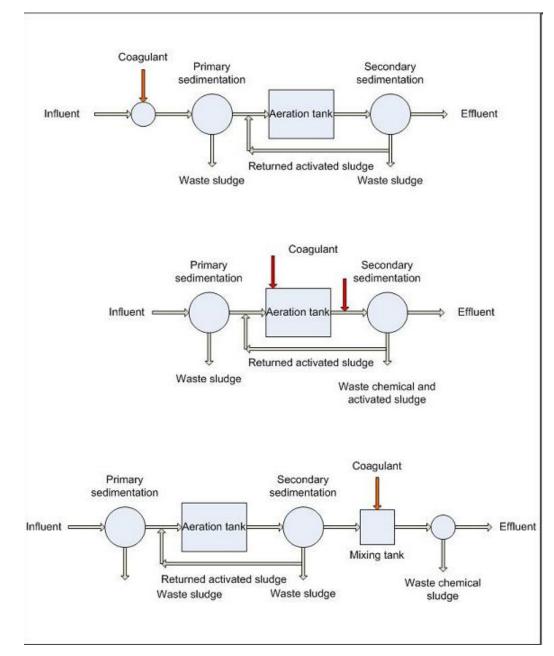
-MEMBRANE TECHNOLOGIES (from microfiltration to reverse osmosis)

CHEMICAL PROCESSES

- PRECIPITATION
- SORPTION
- MAGNETIC COAGULATION

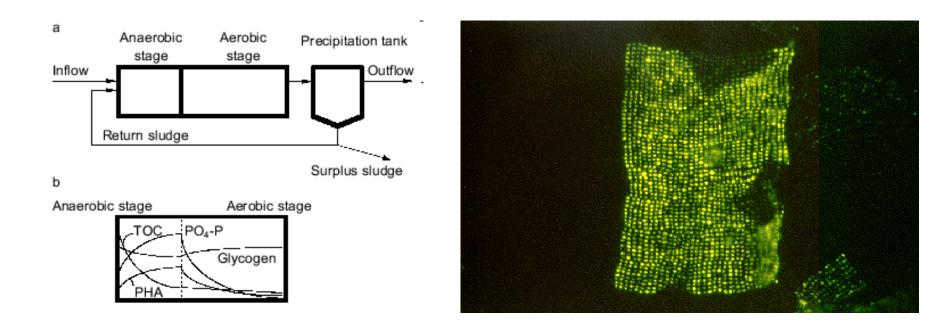
OTHER PROCESSES

BIOLOGICAL PROCESSES
-BIOMASS INCORPORATION (wetland systems)
-EBPR ALGAL CULTURES, PONDS


-ION EXCHANGE, ELECTROCOAGULATION, etc.

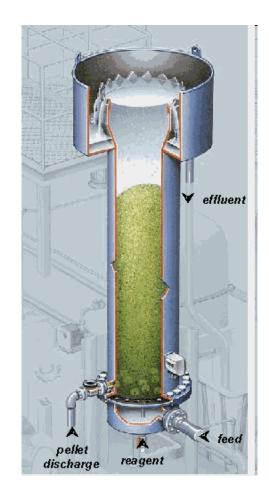
PRECIPITATION BY METAL SALTS

Chemical precipitation by iron, alum or lime


Low bioavailability of phosphorus for plants from iron and alum precipitates

ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL

-direct incorporation of phosphorus to activated sludge biomass


-enhancing the storage capacity of phosphorus as polyphosphate by the microbial biomass in activated sludge

CRYSTALLIZATION

- focused on struvite crystallization using nucleation seeds
- addition of Mg is necessary

SLUDGE APPLICATION

-sludge application on agricultural land or for recultivation and site remediation

-stringent demands for application: stabilization, hygienization, heavy metal content, *Salmonella spp.* presence

-dried sludge or ash application

OTHER SIGNIFICANT TECHNOLOGIES

Adsorption

Ion exchange

Electrocoagulation

Filtration

Magnetic field

Bacteria and microalgae

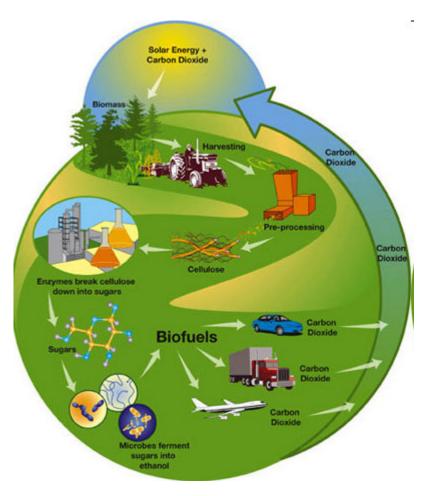
Fig. 1: Schematic of basic electrocoagulation process

cathode

anode

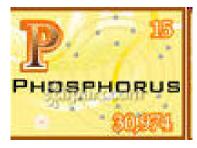
Power Supply

Floating islands (submerged and emerged macrophytes + periphyton)



CONSTRUCTED WETLAND PLANTS AND BIOMASS

- phosphorus is incorporated into leaves, roots and stalks of CW plants as well as into biomass
- sometimes is problematic to harvest biomass efficiently
- energetic utilization of biomass (biofuels)


CONSTRUCTED WETLANDS

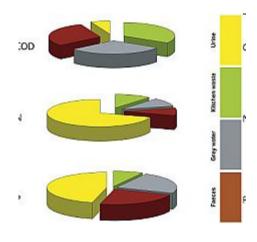
- low-cost, low-tech solutions
- constructed engineering wetland systems (CEWS)
- performance enhanced by reactive sorbents with high phosphorus-sorption capacity

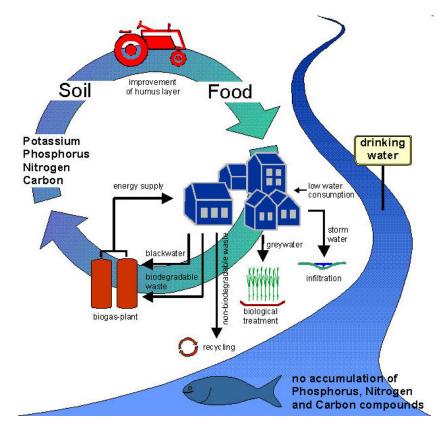
OTHER PHOSPHORUS SOURCES OR TECHNIQUES

- -reject water, ashes
- -activated sludge
- -crop residues
- -minimising phosphorus losses-reducing phosphorus demand-increasing phosphorus uptake

URINE APPLICATION

- -hygienisation and stabilisation necessary (WHO says 3 6 months)
- -struvite fertilizer production from urine
- -urine concentration necessary thawing, freezing, evaporation
- -problematics of xenobiotics, micropollutants and faecal contamination ALGAE!!!


PHOSPHORUS RECYCLING CONCEPT


- utilization of concentrated phosphorus streams
- point source phosphorus separation

DESAR concept – separate collection and treatment of

-yellow water, brown water (black water)

- -grey water
- -storm water
- -organic, solid kitchen waste

Summary

1) Optimalization of energy management – **saving ca. 20 %** of the costs

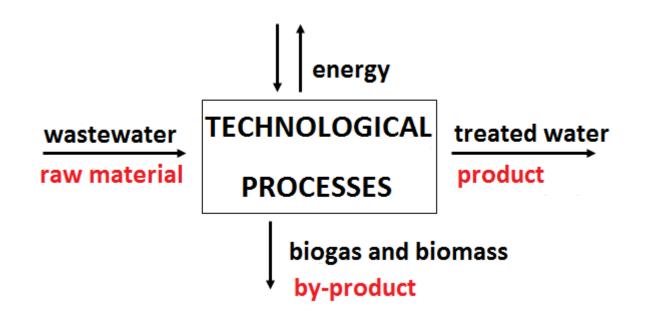
energy audits of pumping shafts, change of devices for those with lower consumption, flowscheme optimization, process control optimization, etc.

2) Recycled energy – saving 10 % costs

utilization of heat, hydraulic and kinetic energy and hydroturbine, heat pump, heat exhcangers application, utilization of energy of outlet and inlet

3) Biomass utilization – saving more than > 60 % COStS

biogas production during anaerobic digestion, co-digestion (fats from grease traps, municipal waste, food industry, etc.), energy obtained during thermal processing of dried sludge


4) Renewable energy – saving more than 10 % COStS

(external sources of energy – solar energy, photovoltaic energy, wind energy, etc.)

Conclusions ...there is energy and nutrients!!!

Wastewater contains 9x more energy than it is necessary for its treatment (Shizas and Bagley, 2004)

But the technology must be under continual control to prevent collapses ...

